chain rule2 [Lecture 3] Backpropagation 이번 강의에서의 학습목표는 다음과 같다.What is Backpropagation Algorithm?Backpropagation with Linear ClassifierBackpropagation with Neural NetworkBackpropagation with Vector/MatrixBack-propagation은 1986년에 "Learning Representations by Back-Propagating Errors" 논문에서 소개된 방법이다. 보통 2012년에 딥러닝이 시작되었다하고 2016~2017년에 활발히 연구가 시작되었다. Image Classification에서는 Input과 weight가 곱해져서 output 값을 만든다. 그 후, 실제 값과 output 값의 차이를 loss fu.. 2024. 10. 20. [미적분학] Back Propagation 혹시 잘못된 부분이나 수정할 부분이 있다면 댓글로 알려주시면 감사하겠습니다. 이전 글에서 Loss Function, Optimization을 알아보았다. Feedforward를 통해 예측값을 얻고 Loss Function(실제값과 예측값 사이의 오차를 계산하기 위한 함수)를 이용해 오차를 계산한다. 그 후, Optimization(오차를 어떠한 방식으로 최소로 할지에 대한 알고리즘)을 통해 오차를 최소화한다. 오차를 최소화하기 위한 알고리즘까지 알아보았으니 오차를 최소화하는 과정. 즉, 가중치를 업데이트하는 과정을 알아보고자 한다..!!(Loss Function과 Optimization에 대해 저번에 작성한 글 참고) [확률 및 통계학] Loss Function 혹시 잘못된 부분이나 수정할 부분이 있다면.. 2024. 3. 2. 이전 1 다음